Minmax regret combinatorial optimization problems: an Algorithmic Perspective

نویسندگان

  • Alfredo Candia-Véjar
  • Eduardo Álvarez-Miranda
  • Nelson Maculan
چکیده

Uncertainty in optimization is not a new ingredient. Diverse models considering uncertainty have been developed over the last 40 years. In our paper we essentially discuss a particular uncertainty model associated with combinatorial optimization problems, developed in the 90’s and broadly studied in the past years. This approach named minmax regret (in particular our emphasis is on the robust deviation criteria) is different from the classical approach for handling uncertainty, stochastic approach, where uncertainty is modeled by assumed probability distributions over the space of all possible scenarios and the objective is to find a solution with good probabilistic performance. In the minmax regret (MMR) approach, the set of all possible scenarios is described deterministically, and the search is for a solution that performs reasonably well for all scenarios, i.e., that has the best worst-case performance. In this paper we discuss the computational complexity of some classic combinatorial optimization problems using MMR approach, analyze the design of several algorithms for these problems, suggest the study of some specific research problems in this attractive area, and also discuss some applications using this model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[11] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear

[4] Igor Averbakh. Minmax regret solutions for minmax optimization problems with uncertainty. [5] Igor Averbakh. On the complexity of a class of combinatorial optimization problems with uncertainty. [7] Igor Averbakh and Oded Berman. Minimax regret p-center location on a network with demand uncertainty. [8] Igor Averbakh and Oded Berman. Minmax p-traveling salesman location problems on a tree.

متن کامل

Randomized Minmax Regret for Combinatorial Optimization Under Uncertainty

The minmax regret problem for combinatorial optimization under uncertainty can be viewed as a zero-sum game played between an optimizing player and an adversary, where the optimizing player selects a solution and the adversary selects costs with the intention of maximizing the regret of the player. Existing minmax regret models consider only deterministic solutions/strategies, and minmax regret...

متن کامل

Minmax regret solutions for minimax optimization problems with uncertainty

We propose a general approach for nding minmax regret solutions for a class of combinatorial optimization problems with an objective function of minimax type and uncertain objective function coe cients. The approach is based on reducing a problem with uncertainty to a number of problems without uncertainty. The method is illustrated on bottleneck combinatorial optimization problems, minimax mul...

متن کامل

A new bound for the midpoint solution in minmax regret optimization with an application to the robust shortest path problem

Minmax regret optimization aims at finding robust solutions that perform best in the worst-case, compared to the respective optimum objective value in each scenario. Even for simple uncertainty sets like boxes, most polynomially solvable optimization problems have strongly NP-hard minmax regret counterparts. Thus, heuristics with performance guarantees can potentially be of great value, but onl...

متن کامل

Approximation of min-max and min-max regret versions of some combinatorial optimization problems

This paper investigates, for the first time in the literature, the approximation of minmax (regret) versions of classical problems like shortest path, minimum spanning tree, and knapsack. For a constant number of scenarios, we establish fully polynomial-time approximation schemes for the min-max versions of these problems, using relationships between multi-objective and min-max optimization. Us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RAIRO - Operations Research

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2011